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It is an open problem whether the entropy numbers en( T) of continuous linear
operators T: X ---. Yare essentially self-dual, i.e., enl T) ~ en( T*). We give a positive
result in the case that X and y* are of type 2. using volume estimates. This
generalizes a result of Carl (On Gelfand, Kolmogorov, and entropy numbers of
operators acting between special Banach spaces, University of lena, lena, East Ger­
many, 1983, preprint). Moreover, we derive bounds for the approximation numbers
anI T) of T by probabilistic averaging. The formulas are applied to determine the
exact asymptotic order of the approximation numbers of the formal identity map
between various sequence spaces as well as tensor product spaces. In the special
case of I;, the result was first proved by Gluskin (Mat. Sh. 120 (1983), 180-189.
[Russian]) using a different method. C 1987 AcademIc Press. Inc

O. INTRODUCTION

We recall some basic definitions and notions. If X is a Banach space, we
denote its unit ball by Bx. The n-dimensional Ip-spaces will be denoted by
I;, 1~p ~ co, the conjugate index by pi = p/(p - I). All operators T: X ---> Y
will be continuous linear maps between real or complex Banach spaces.
Given such T: X ---> Y, we let

Gn(T):= inf{ II T - Tnlll Tn: X ---> Y, rank Tn < n}
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stand for the approximation numhers,

('II( T):= inf{ II TI x,,111 XII s X of codim XII < n}

for the Gelfand numhers,

dll(T):= inf sup inf IITx-Yil
I. <; Y II x II ~ I VEL

dim L < n

for the Kolmogorov numbers, and

for some YI ,..., Y2n IE F}

for the entropy numbers of T, n E N. Any of these sequences .I'll E {a,l' ('II' dll ,
ell} satisfies the relations

sll+/n_1(5+ T) :::;.1'11(5) + s/n(T); 5, T: X ---> Y,

Sll+/n 1(5T):::; .1'11(5) s/n(T); 5: Y ---> Z, T: X ---> Y.

Moreover,

all (T) ~ ('II( T), all ( T) ~ dll ( T),

with equality for Hilbert space operators T, in which case we denote these
singular numbers by Sll( T). For 1:::; p :::; CJJ, let c; denote the space of
operators L(l~, l~) normed by

( )"'"II TIl c~ : = L~) T)" .
IE N

In particular, 11'11 c" is the nuclear and 11'11 c" the operator norm. All these
[ f

facts about .I·-numbers can be found in Pietsch [13]. If i: Y ---> Z is an injec­
tion, q: W ---> X a surjection, and T: X ---> Y continuous linear, the entropy
numbers satisfy

ell(Tq)=ell(T), !ell ( T) :::; ell ( iT) :::; ell ( T);

they are surjective and (up to a factor of !), injective.
Given sequences (Sll)llEN and (tll)llEfliSIR, we write

if there are constants c, d> 0 with

CSll:::;tll:::;dsll , nE N.
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Generally vol ll will denote the n-dimensional Lebesgue measure on [RII.
By rll(t) we shall denote the nth Rademacher function and by (gll(W))IlEN a
sequence of independent standard Gaussian variables on some probability
space, i.e., each gil has density function

(2n) -1/2 e- r2
/2.

A Banach space is of (Gaussian) type 2 provided that there is c > Osuch
that for every finite sequence (xJ7~ I <;; X

(11
11 112) 1/2 (II ) 1/2

IE i~t g,x i :( C '~I IIx i l1
2

,

where IE denotes the expectation. The best type 2 constant c will be denoted
by T2(X). The space is of (Rademacher) type 2 if the same holds for
Rademacher functions ri instead of Gaussian functions gi. Both notions
coincide in type 2 spaces, since by Maurey and Pisier [12] there is an
increasing function f [R + ....... IR + with

Let RII be the natural projection of L 2((O, 1); X) onto span{gi(t) xii
i=I,...,n, X,EX}. X is called K-convex if y(X):=suPIlIIRIlII<oo. Any
space X of type 2 is K-convex, and every quotient space of X, XjY for
y <;; X, is again of type 2 with a uniform estimate

for some increasing function g: IR + ....... IR +. A detailed account on the
K-convexity property may be found in Pisier [17]. For the notion of
2-convex lattices and I-unconditional as well as I-symmetric bases we refer
to Lindenstrauss and Tzafriri [10].

If {Xi} is a I-unconditional basis of X, we let Ax(n):= IIL7=t Xiii· {xn
will denote the biorthogonal sequence in the dual space X*. For the
notions of p-summing operators (JIp , np ) for I:(p:( 00 and Hilbert­
factorizable operators (F2, Y2) cf. [10 or 13].

The unit ball of a Banach space X is denoted by B x = {x: Ilxll :( I}. If
dim (X) = n, then B X* will be identified with {y E RIl

: I(x, y):( 1 for all
x E B x}.
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1. ENTROPY NUMBERS

It is an open problem whether the entropy numbers are essentially self­
dual, i.e., whether asymptotically

TE L(X, Y) (1.0)

holds for all continuous linear operators T. Direct calculations have shown
(1.0) to be true for certain diagonal operators in sequence spaces. Carl [1]
obtained a positive result for operators T between certain Banach spaces if
en(T)"'n-~ for some a>O. We generalize his result in

THEOREM 1.1. Let X and Y be Banach spaces such that X and y* are of
type 2. Then/or any TEL(X, Y)

(1.1 )

where c=ln(18 T2(X) T2(Y*)y(X)y(Y*)) and d=A(T2(X) T2(y*))2 only
depend on X and Y, A being an absolute constant.

We need some lemmas. Volume estimates will yield a duality statement
for en( T) for rank n operators T. An approximation argument together with
estimates of approximation numbers by entropy numbers will then settle
the general case for arbitrary T E L(X, Y).

LEMMA 1.2. Let X be a real n-dimensional space, B2 be the ellipsoid of
maximal volume contained in BX" Then

(
vol B )I!n (VOl B )I/n

n x· ~ n 2 ~ T,(X).
vol n B2 voln Bx ~

This lemma follows basically from the argument in the proof of
Proposition 2.1 of Gordon and Reisner [6]. The left volume ratio was also
estimated by T 2(X) by Tomczak and Jaegermann, cf. Rogalski [14]. For
the sake of completeness we indicate how the proof in [6] is modified. It
was recently proved by Bourgain and Milman that (vol n Bx voln Bx.) l/n '"

(vol n B2 )2/n (cf. [16]).

Proof Let E:= X* and B2 be the ellipsoid of maximal volume in BE
which defines the Hilbert space I;. We denote the formal identity map by v:
1;-.£ (John map). Hence Ilvll ~ 1, IIv· 1 11 ~~. By Santalo's inequality
[15]

(
vol B") l/n (VOl B) I/nn E ~ n 2

voln B2 '" vol n BE* .
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B2 is also the ellipsoid of minimal volume containing B E* = B x, and
v* -I: l~ --+ E* = X the John map for X. The proof of Proposition 2.1 of
[6, (2.9)] yields, using this fact about v* - I,

c::: ;:)'/n ~n-I/2 ([ II~giv*-t(enr)'/2,

which is estimated by T 2(X) as in [6]. I

LEMMA 1.3. Let X and Y be Banach spaces with X, y* being of type 2.
Then for all operators T E L( X, Y) of rank T ~ n

(1.2 )

Proof We will assume that X and Yare real Banach spaces. In the
complex case, n-dimensional volume estimates have to be replaced by
(2n )-dimensional real volume arguments.

(i) We first assume that X and Yare n-dimensional. Let Hand K
denote the n-dimensional Hilbert spaces the unit balls of which are the
maximal volume ellipsoids contained in B x* and By. Then B H is also the
minimal volume ellipsoid containing B x. Let i: X --+ H, j: K --+ Y denote the
formal identity maps. Thus II ill = iii II = 1. The polar decomposition theorem
shows that the entropy numbers of any S: H --+ K are the same as those of
the diagonal operator in l~ induced by the singular numbers of S. The latter
being self-dual, we have en(S) = en(S*). Considering T: X --+ Y as a map
between Hilbert spaces, we find with S=;-ITi- I,

a:=log2(3T2(X)), b:=log2(3T2(Y*)), m:= [an] + [bn] +n+2

em(T:X--+ Y)~em(rlTi-t:H--+K)

=emU I*T*;-I*:K--+H)

~ e[an] + 2U - 1*: X* --+ H)

x e[hn] +2U- t *: K --+ Y*) en(T*: y* --+ X*). (1.3)

Choose in B K a maximal system M = {z i } f~ t of points such that

for all 1~ i -# j ~ L.

Then Uf~ 1 ( {z;} + B y*) is a covering of BK since otherwise a point might
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be added to M. On the other hand, the sets ({ Z i I + 1B y.) are disjoint for
different i and contained in B K + 1B y' s. ~BK' Thus, comparing volumes,

L vol,,( 1B y.) :( vol,,(~BK)'

L Ii" :( 3(vol" B K/vol" By.) 1/" :( 3T2 ( y*)

using Lemma 1.2. Hence L:(2 k
I for k=[hnJ+2. Thus Crh"]+2(j* I)

:( 1. Similarly, c[a,,] + 2(i* -1):( 1. This yields c rcn1 ( T):( c,,(T*) by (1.3) with
c = log2(l8 T 2(X) T 2( Y*)), since m :( [cn J for n ~ 2.

(ii) We now drop the assumption that X and Yare n-dimensional
and consider Banach spaces X and Y with X, y* of type 2 and T E L(X, Y)
has rank( T) :( n. Consider the canonical factorization of T

T
T: X~ X/Ker T --------> Im( T)~ Y,

T induced by T, n projection, and j injection map. Since the entropy num­
bers are projective and injective up to a constant of 2, and T acts between
:( n-dimensional spaces, we find using (i)

C[cnl( T) = C [<" 1(jTn ) :( 2c [<,,]( T)

:( 2c,,( T*):( 4c,,(n* T*j*) = 4c,,( T*),

where c = Log2(18 T 2(X/Ker T) T2((1m T)*)). Both spaces X/Ker T as well
as (1m T)* are quotient spaces of type 2 and thus

Rcmark. Without type 2 assumptions the following can be shown:
There is some absolute constant a such that for all operators T E L(X, Y) of
rank( T):( n,

ca" 10(" + 1)( T):( 4e,,( T*).

In the case of dim X = dim Y = n, one uses the Lewis maps i: X -> I~,

j: I~ -> Y with l(i-I) I*(i) = n = l(j) I*(j I), cr. Lewis [9J, to construct a
Hilbert space factorization of T. The analog of Lemma 1.2 for i,j can be
proved along the lines of Gordon and Reisner [6]. Estimates of L Ii"

similar to those in (i) now involve II TIl, II T-III, which can be bounded by
n, yielding the logarithmic factor.

LEMMA 1.4. Let X and Y hc Banach spaces such that X and Y* are of
type 2. Thcnfor any TEL(X, Y) and h:= T 2(X) T 2(Y*)

nEN. (1.4)
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Proof Let £ >°and choose a subspace XnC X of codimension <n with

By Maurey's extension theorem [11] TI x" has an extension to X, S: X -+ Y
with II SII :;:; h II TI x" II, SI x" = TI x,,' Therefore, T - S has rank < nand

a,,(T):;:; II T - (T - S)II = IISII :;:; (1 + £) bcn(T).

The statement for the Kolmogorov numbers follows by duality. I
The following proposition is due to Carl [1].

PROPOSITION 1.5. There is some absolute constant a >°such that for all
Banach spaces X and Y with X, y* being of type 2, all T E L(X, Y) and all
nE N,

(01 c/T)Y/" :;:;aT2(X) T2(Y*) e,,(T).

COROLLARY 1.6. Let X, Y be Banach spaces with X and y* of type 2.
Then we have for all TE L(X, Y)

an(T):;:; de,,(T),

where d:=a(T2(X) T2(y*))2, afrom Proposition 1.5.

Proof The result follows immediately from Lemma 1.4 and
Proposition 1.5. I

Proof of Theorem 1.1. We reduce (1.1) to rank n operators by
approximation. Let c be as in Lemma 1.3 and T E L(X, Y). For £ > 0,
choose T" E L(X, Y) of rank (Tn) < n with liT- Tnll :;:; (1 + B) an(T). Then

e[cn](T):;:; II T - T"II + e[cn](T,,):;:; (1 + 1:) a,,(T) + e[cn](Tn)·

By Lemma 1.3, e[cn] (T,,) :;:; 4e,,( T:). The principle of local reflexivity yields
a,,( T) = a,,( T*) for compact operators T (cf. Pietsch [13, 11.7.4]). For non­
compact TE L(X, Y) at least an(T):;:; 3an(T*) can be shown. Hence,

e[cn](T):;:; 3(1 + B) an(T*) + 4e,,(T:)

:;:;3(1 +£)an(T*)+41IT*-- T:II +4e,,(T*)

:;:; 15(1 +B)an(T*)+4e,,(T*)

:;:; (15(1 +10) (a(T2(X) T2(y*))2 +4) e,,(T*)

where the last inequality follows from Corollary 1.6. The right side
inequality in (1.1) follows by duality. I
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Remark. By a modification of the proof of Theorem 1.1 and Lemma 1.3
one can show: For any 8>0 there is no(<;)E N such that for all n~no

(1.5 )

d being as in Theorem 1.1. Let 0 < <; < 1. To prove the statement, one has to
change m in (1.3) to m=[anJ+[bnJ+[GmJ+2 for a suitable
'Yo> 3(a + b )/e, yielding

for rank n operators T. Since (a+b+a)(n+ I)lan is less than (l +e) for n
larger than 31e, standard arguments using the monotonicity of the entropy
numbers will imply (1.5) for rank n operators. The approximation
argument above remains unchanged using (1.5) instead of (1.2).

In the proof of Lemma 1.3 we used the entropy numbers of diagonal
operators on Hilbert space. Pietsch [13] showed in 12.2.5. that an operator
D,,:12---+12' (X")';~If---+(O'JlX")'~~1 haspth power summabIe entropy num­
bers iff 0' E lp, without calculating e,,(D,,) explicitly. We now give an
asymptotic formula for eJl(D,,) in sequence spaces.

PROPOSITION 1.7. Let X be a real Banach space with a I-unconditional
basis {x; },y~ I' Let 0'1 ~ 0'2 ~ .. , ~ 0 be decreasing and D,,: X ---+ X the
diagonal operator induced by X; f---+ 0' IXI' Then for all kEN

sup 2- k!"(0' 1 ... 0'")1/,, :::;; ek + 1(D ,,):::;; 6 sup 2 k/Jl( 0' 1 ••• O',y!Jl.
liEN liEN

Proof For the left inequality, choose nEN. Let XJl=span{x/}7~lcX

and D~:=D"IXn:X,,---+XJl'Then ek+I(D,,)~ek+I(D~)and with BJl:=Bxn
any covering D~(BJl)SU7:1 ((."J+15B,,) with 15>0 yields the volume
estimate

:::;; 2k15 Jl voIJl(BJl),

2- k!Jl(0'1 ... O',,)l/Jl:::;; 15.

Thus,

To prove the right-hand side inequality put 15:= 8 SUP/E N 2- k!I(O'j'" O'y!1
and, for a given <; > 0, choose n E N with
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If all a, ,..., an are ~ 15/4, let r:= n. Otherwise, determine r EN by
a,+, < 15/4 ~ a,. Using similar notation as above, choose a maximal system
of points {xJt~ I in D~(B,) with

Ilx; - Xjll x, > b/2,

Then D~(B,) <:; Uf"~ , (U'j} + b/2B,) in view of the maximality of the system
{.xJT=,. Letting B=Bx , any element in D,,(B) can be written as
D"X=L~, a;(X;x i for X=L~I (XiX;EB. Since {Xi}~l is I-unconditional,
we find

r If)

D"x= L a;(X;x;+ L a;(x;x;ED~(B,)+b/4B.
i= 1 i=r+ I

Thus, DAB)<:;Uf·~l ({ij } +~bB). Hence, e[log21.1+1(D,,)~~(5.

To estimate L, note that

L

U ({ .x j } + 15/4 B,) <:; D~(B,) + 15/4 B, <:; 2D~(B,)
j~'

is a disjoint union sitting in 2D~(B,). Hence,

L( 15/4r vol,( B,) ~ 2'( a, ... a,) voU Br ).

By choice of n EN, (a\ ... a,) ~ 2k (b/8)'. Therefore,

L ~ (8/b)'(a, ... a,) ~ 2k,

implying ek+l(D,,)~~b. Letting £---+0 ends the proof. I

COROLLARY 1.8. Let X be a real Banach space with I-unconditional basis
{x;}r==,. Let a,~al~ ... >0 and D,,:X---+X the operator given by
X;~ a;x;. Then

Proof Obviously, ek+,(D,,) ~ ak/2 yields the implication "=>." Assume
now a E lp. Let 0 < q < p and 11 E lq be positive decreasing. Then
Iln ~ 111111 qn -l/q for all n E N. Proposition 1.7 gives

with cq depending only on q. Apply this to the sequence 11 = (a 1 ••• abO,... )
to get ek(D~) ~ c" (L;~, aJ /k)'jq. Hence,
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where the last estimate is Hardy's inequality, cf. [7]. I
Remark, Similar statements hold in the case of complex Banach spaces

if the exponent kin in 2 kin is changed to kl(2n); one has to use the
(2n )-dimensional volume in en = (R2n.

2, ApPROXIMATION, GELFAND AND KOLMOGOROV NUMBERS

In this section we derive some general estimates for s-numbers using
probabilistic methods. {gi.;}L=" {hi.J~ i= l' and {gi }7= , will denote stan­
dard independent Gaussian variables. For {.\J7~, c X we let

THEOREM 2.1. Let TEL(X,y) with T=L7~lxi*®Yi' {xncX*,
{YI} c Y. Then for k < n,

ak+l(T)~ ~{t:2({xt}7=1)1E II ±g;y;11
yk ,~l I

+£2({Y;}7~1)1E Ilitl g;xtll

+k '
/2

1E li,t g,x;*111E II it, g;y;!I}·

For the proof we need the following inequality of Chevet [2]:

IE t~ I gi.,xt ®Yill ~ t: 2{{xn7~ d IE 11ft, giYil1 + t:2{{Yi}7~,) E II;tl g;x,*11
(2.1 )

(Chevet's proof included a multiplicative constant J2 on the right-hand
side which was improved to 1 in [5]).



ESTIMATES FOR ENTROPY 229

Proof Without loss of generality we may assume that {Y,}7~ 1 are
independent. Therefore, there is a biorthogonal sequence {yn7~ 1 C Y*.
Let G(w): X -+ Y, P: Y -+ Y, and G*(w): Y -+ Y be defined by

n

G(w) = k- I
/
2 I gi,;{W) xt ®Yj
i.j~ I

k

P= :I y/&JYj
j~1

n

G*(w)=k- I
/
2

" g,(w)y*®y,1... .J J
',j~ I

and let Hand H* be defined as G and G*, respectively, with variables h'.j
on a different probability space. Obviously rank( G*PG) ::::; k, and easy
calculation shows that T = [(H*PH). Therefore,

a k + I(T)::::; [w II T - G*(w) PG(w)11

= [w II lEuAH*(w') PH(w')) - G*(w) PG(w)11

::::; [,)E w ' IIH*(w') PH(w') - G*(w) PG(w)11

=[ [ ·112(H*(W')+G*(W))p(H(W')-G(W))
w w j2 j2

- G*(w) PH(w') + H*(w') PG(w)ll.

(H*(w') + G*(w ))/j2 and (H(w') - G(w))/j2 have the same distribution
as H*(w') and G(w), respectively. Moreover, they are independent, hence
we obtain

Fix w' and let H* = H*(w'). Then by (2.1) we get

IEwIIH*PG(w)11 = lEw Ilk- I
/
2
,tljtl gi,;{W)Xt®H*(Yj)11

::::; k -1/2 {82( {xn;'~ I) lEw tt g)w) H*(y/)II

+ 82( {H*(Yj)}J~ l) [w Ilitl gi(W) xt II}· (2.2)

Now we integrate over w'. 8 2( {H*(w') Yj }J~ l) is the norm of the operator

n k

k- l/2 I :I hi./w') ej&Jy,
i~ 1 j~ 1
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mapping I; to Y, hence by inequality (2.1) it follows that

1E""£2( {H*(w') YI }7~ I)

~k !!2{£2({e/}7~1) IE", Ilif g,(W')Y'!I.1
I,~ I

+ £2( {Y,};'~ I) IE"" ttl gJw') e/ Ii}
~ k-

I/2 {Ero • ttl gi(W') Yi II + Jk £2({ Y,};'= I)}' (2,3)

Since {L7= I t/gi,j};'= I is equivalent to {(L7= I ItY)I/2 gi};'= I' we have

1E",lEw ' IIJI gJw) H*(W'HYi)11 =k-
I/21E",1E", II,tllt g;(W)gijW')Yill

= k-
I
/
2

IE w (JI Ig/(w )1
2
f2 Ero Il

i
t! gi(W') Yi II

~ E", Ilitl gi(W') Y,II·
Theorem 2.1 now follows from this, (2.2), and (2.3). I

PROPOSITION 2.2. Let T E L(X, Y), {xJ;'~! he a hasis of X and
Y, = T(x,), i = 1, 2, ... , n. Then we have for k < n

. (T)./ IEIIL;'~ I g,Y,11 +~ £2( {Yi};'= I)
(k+1 "'::: ~ .

IEIIL;'~ I gix,ll - V n - k £2( {x,};'=!)

Proof We shall need the following inequality due to Gordon [5]

IE II f glX/ 11- Jk £2( {x/};'~ I):S IE ( ~i~\ II' if g,jw) tiy/II)· (2.4)
I~ I II II. I ,= 11~ I

Let

then dim(L,vl = n - k except on a set of measure O. Therefore we have a.e.
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We multiply by the denominator and integrate with respect to w. The left­
hand side can then be estimated from below by (2.4) and the right-hand
side

from above by (2.1). This yields Proposition 2.2. I

PROPOSITION 2.3. Let SE L(X, Y) and y;E S(Bx ), i= 1,..., n, be linearly
independent. Moreover, consider IE L( Y, l~) with I(yJ = e;, i = 1,..., n. Then
one has for k < n

n-~
dk+,(S» fL.. .

v kn 11111 + I:7~ I III*(enll

Proof Given e > 0, choose a subspace L of Y of dimension ~k and
vectors W; E L, i = 1,..., n, in S( B x) such that

for all i= 1,... , n. We have

11 n

(l +e)dk+,(S) I III*(enll> I Ily;-w;IIIII*(et)ll
;~ , ;=1

n

>n- I <w;,I*(en>
i= ,

Since dim L ~ k, we obtain

tr Ctl I(WJ®et ) ~ It, s, Ct, I(WJ®et )

~Jk1!2Ctl I(WJ®et )

= Jk Ct, II/(wJII~y/2
~vI'k {Ctl 11/(WJ_/(YJII~Y/2 +Ctl Ild~Y/2}

~ Jk {II/II~ (l + e) dk + ,(S) + vi';;}·

640/49'3-3
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Therefore, we get

(1 + t:) dk+ I(S){~ IIIII +ItI 11/*(enll}?c n - Jkn. I

PROPOSITION 2.4. Assume that dim(X) = dim( Y) = n and that S E

L(X, Y) is an invertible operator. Then we have for all k < n

dim(E)=n-k}.

Proof There exist AEL(Y,/~), BEL(l~,X) such that i'2(S 1)=
IIA II IIBII and S 1 = BA. Let

a= IIAII {inf{d(E, 1~-k)IE';; Y, dim(E) = n - k}) I

There is a subspaceL of X such that ck+I(S)=IISILII, where
dim(L)?c n - k. We claim that there exists a vector X o E L such that

IISxol1 = I and liB 1xo ll:( a (2.5 )

since, otherwise, we have for all x "'" 0, X E L, II B 1x II > all Sx II, therefore

which implies that d(S(L), I~ k) < IIAII a 1; but this contradicts the
definition ofa. Using (2.5) we obtain

which ends the proof. I

Remark. Let s be the largest dimension of a 2-isomorph of I; in the
space Y. Then, by using Theorem 5.2 in [3] we get

fi?cc(n-k)1/2/inf{d(E, 1~-k)IEc Y}

for some absolute constant C > O. Hence we obtain from Proposition 2.4

(2.6)

3. ApPLICATIONS

In this section we apply the previous results to derive asymptotic
estimates for the approximation numbers of the identity maps between
general symmetric spaces as well as the spaces of operators c; and special
tensor product spaces. The first results are direct corollaries of Section 2.
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COROLLARY 3.1. Let {Xj}7~ ICY and {Yi}7~ 1 C Y be normalized
I-unconditional bases of X and Y, respectively. Define idx, yE L( X, Y) by
idx, y(xJ = Yi, i = 1,..., n. Then we have for k < n,

if 1~k~max{X~,.(n), )·t(n)}

if maxVi.(n), ),t(n)} ~k,

where c=c(T2(X*), T2(y)) is a constant that depends only on the type
2-constants of x* and Y.

Proof This follows from Theorem 2.1 since

and

and similar inequalities hold if we interchange {xn7~ 1 and {y;} 7= l' Also
we have to observe that

COROLLARY 3.2. Let {Xj}7~1 and {Yj}7~1 be normalized I-symmetric
bases of X and Y. Let idx, yEL(X, Y) be defined as above. Then we have

if 1 ~ k ~ ). t(n)

if At(n)~k~n/2,

where c = c(T2 ( Y)) is a constant that depends only on the type 2-constants
of Y.

Proof We apply Proposition 2.3. Since {Yi }7~ 1 is a I-symmetric basis,

n n

L 11/*(e7)11 = I IIy711 =n.
i= 1 i= 1
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Using the fact that a Banach lattice of type 2 is 2-convex and applying the
argument in the proof of Proposition 3.7 [8] we find

_ I' n [

11111 ~ C(T2( Y)) /n :1 I Yi; .
I'i-,,---l

Thus we obtain

The previous two corollaries together yield

COROLLARY 3.3. Let {xi}7~1 and {Yi}7~1 be normalized I-symmetric
bases of X and Y. Let idx. y E L(X, Y) map Xi to Yi' i = 1,..., n. Then we have
for all 1~ k ~ nl2

c-1adidx, y)~max{dkUdx. y), ckUdx, y)} ~akUdx. y),

where c = c( T 2(X*), T 2 ( Y) depends only on the type 2-constants of X*
and Y.

Remark. For X = I~, Y = I~, 1~p ~ 2 ~ q ~ CX) and k ~ nl2 we obtain
the results of Gluskin [4] again. For some further applications in the case
k ~ nl2 we need Gluskin's method.

DEFINITION. Let X = (~Il, 11'11) be n-dimensional and N E 1\1, a> 0. We
say that X has N a-essential extreme points iff there are elements
Al , ... , ),."1 E Bl~ with

where r(A) denotes the convex hull of a given set A. Gluskin [4] used this
concept to prove

THEOREM 3.4. Let 8> 0, a> 0, n, N E 1\1. Assume that X = (W, 11'11 x)
and Y = (~Il, 11'11 y) have N a-essential extreme points with
N < (it;) exp(82 nI4). Then there is c = c(a} depending only on a such that

ak(Id: X --+ Y*) ~ c(8 J(n-k)/k + 82(nlk)).

Gluskin applied this to X = Y = I~, 1~ p ~ 2. We consider X = Y = I~ ® IT I;:,
which is the dual of X* = y* = I;; ® I I~ = L(l~, I;:), where lip + lip' = J.

LEMMA 3.5. Let 1 <p ~ 2, Then there are aI" bl' > °such that I;: ® IT I;:
has Nap-essential extreme points for some N E 1\1 with

N ~ exp(bp n2
/P }.
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Proof By [4], I; has N~exp(f3pn2/p') IXp-essential extreme points for
some IX p' f3p>O depending only on p. Denote them by A" ... , )'N' Then
IIAi@A;lI,~2~1 and

1X 2 Bi" "0 In S 1X 2 F(x@ylllxliin= II yilin = 1)P (! "C)JT P P p p

S T(Ai@Ajli,J= 1,... , N) S B I(

Since N 2~ exp(2f3pn2/P'), this proves the lemma with ap= IX~, bp= 2f3p. I

PROPOSITION 3.6. Let 1 < P ~ 2. Then there are constants ap, bp> 0 such
that c; has Nap-essential extreme points for some N E N with

N ~ exp(bpn2/p' + '(in n)).

Proof By Gluskin [4] there are IXp, f3 p> 0 such that
IXp-essential extreme points for M ~ exp(f3pn2/p'). Thus
,1:= p',..., AM} S BI~ such that

IXpBI; S FU ', ..., AM) S BI~'

I; has M
there is

(3.1 )

Moreover, the proof of Lemma 1 of [4] and the remarks before it show
that the ),i can be chosen in such a way as to have support
Si:= {j E { 1,..., n} IA~ # O} of cardinality

ISil ~ [n 2
/
p
'] + 1.

Let 15 = n - 2 and choose a 15-net Ll in Bin of cardinality
2

L= ILl I~ (l + 2/15t ~ exp(2n In 2n).

Let

.E:={TEL(l~,/~)IT=kt AkXk@Yk with A=(Ak)k~,EA,

x k> Yk E Ll and c2( T) ~ 2} .

Since for each i, ISil ~ [n 2
/P'] + 1, the number of different elements in.E can

be estimated as

I.EI ~ ILlI 2([n
2

/
P

]+ 1)1,11

~ exp(4n(ln 2n)(n2/p' + 1) + f3pn2/p') ~exp(bpn2/p'+ 'In n)

for some bp > O. We claim that for n ~ 41X; I
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which would prove the proposition. The right inclusion follows from the
definition of E. To prove the left inclusion, let T E c; with cp( T) = L Then
there are },El;, IIAll p = 1, and orthonormal systems (U k )Z=I' (Vk)Z~1 cl~

with
11

T= L AkUk@Vk,
k='

Choose Xk,YkEL1 with Iluk-xkll,;:::::;n- 2
, Ilv k -Ykll,;:::::;n- 2

• Further, by

(3.1), there are (ai)~' r;;;. R+ with L~ 1ai :::::; rx;-I such that A= L~, a)'. Let

n

T j := L A~Uk@Vb
k~l

n

Si:= L A~Xk@Yk.
k~'

Then T = LZ = 1 a j Ti and elementary estimates show

c2(Ti -Si):::::;Cp(T,-Si):::::;2n I,

c2(SJ:::::; C2( Ti )+ C2( T i - Si):::::; 11).1112 + 2/n:::::; 2 (n? 2).

Hence, SiEI and S:=LZ~1 aiS,E(Xp-lT(I) provides an approximation of
Twith

11

cp(T-S):::::; L aicp(T,-Si):::::;2rxp-
l /n:::::;!

k~l

for n? 4rxp '. Now let T ' := T - S and repeat the argument with T1 instead
of T. This yields S' E !rx;; 1T(E) with

Cp ( T 1
- S') :::::; t.

Continuing this with T2 := T' - SI, we find SI E (1/21) rx;- 1T(I) with

cp(TI - SI):::::; 1/2'+ I,

This gives with So:= S

'CD

T = SO + T 1 = SO + S' + T2 = ... = L s' E 2r:t.p- 1T(E),
'=0

which is what we claimed. I

PROPOSITION 3.7. Let 1 < p < 2. Then with constants independent of
1 :::::; k < n 2

, but depending on p,

if 1:::::; k ~ [n J 2iP ]

if [n 3
2iP ] < k:::::; n2/2.
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For k>n2j2 one has at least: If k~n2-bpn3-2/P(lnn) then d;1
Jn 2- k n-(II2l- lip ~ ak(Id: c; ..... c;,) ~ dp Jn 2- k n-(1/2)--I/P~, and

ifn2- bpn3- 2/P(ln n) ~k < n2 then max{n l - 2/p, d;l Jn 2- k n-(II2l- I/P} ~
ak(ld: c; --+ c;,) ~ dpn l - 2/p (ln n).

Proof If 1~ k ~ n2j2, the upper estimate follows from the obvious fact
ak~1 in the case k~[n3-2/p], and when [n 3- 2/p]<k<n2j2 from
Theorem 2.1, where we use the estimate d(c;" c~J~nl/p and inequality
(2.1) to obtain

IE II ~ g ...etX.'e.·11 ~nl/p'lE II ~ g ..e.tX.'e·11 ~d n l/
p
'+1/2~ I, J I \CY I n -....;;:: i..J l,j 1 \(y ) n -....;;:: P •

i,j= 1 cpO i,j= 1 ex

If n2j2 < k < n, the upper estimates are derived from Gluskin's
Theorem 3.4 and Proposition 3.6. The lower estimates are a consequence of
Proposition 2.3 in the case k ~ n2j2, and of Proposition 2.4 for k > n2j2. To
apply Proposition 2.4 one has to know that largest 2-Hilbertian subspace
in c;, has dimension of the order n3- 2/p (see Example 3.3 [3]). For k > n2j2
we also use the estimate ak(Id) ~ IIId-III- 1 = nl - 2/p. I

Remark. Probably the logarithmic terms for k > n2j2 are not necessary.
The approximation numbers ak(ld: c; --+ c~) for 1<p ~ 2 ~ q < 00 can be
derived in a similar way, as in the case of I; the case p' = q is the essential
one.

When p = 1 we have

PROPOSITION 3.8. For 1~ k < n2
,

1., if l~k~n

if n~k<n2j2

if n2j2~k<n2-n

if n2- n < k < n2.

Proof We apply the same proof of Proposition 3.7 for p = 1, but with
In n replaced everywhere by 1 because we know that c7 = I~ ®" I~ has
N = exp(bn) a I-essential extreme points by Lemma 3.5. I

PROPOSITION 3.9. Let 1 <p ~ 2. Then with constants independent of
1~ k ~ n, but depending on p,

1

ak(Id: I; ®" I; --+ I;. ®, I;,) - nl/p'jfi
n -2/p

1~ k ~ [n 2/p ']

[n 2
/
p
'] < k ~ n 2j2

n2- [n2/p'] ~ k < n2.
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For n2/2<k<n 2
- [n 2IP 'J one has

ak(Id: I; ®" I; ~ I;, ®r./;) ~ dp Jn 2
- k/n l

+ liP,

Proof The upper estimate for k ~ n2/2 again follows from Theorem 2.1
and

[ II, f gi,jei@ejll" ", ~ dp n
1Ip

',
1.)=1 Ip,®,lp

which holds by Chevet's inequality (2.1). The upper estimate for k > n2/2
again follows from Theorem 3.4 using Lemma 3.5. For the lower estimate
in the case k ~ n2/2 we again use Proposition 2.3. To do so, one has to
estimate

from above by n l
/
p

• This is seen as follows: For any TE L(lR n
, IR n

),

II TII/~2 = 7r2(T: I~ ~ I~) ~ IIId: I~ ~ 1;11 II T: I; ~ I;, II

x 7r 2(Id: I;, ~ I~)

~n-(1/2)+I/PIITII" " xn 1
/
2 =n 1

/P IITII " ". I
~ ~®,~ ~®,~

Remark, For n2/2 < k < n2
- [n 2

/
p 'J, the given upper estimate is

probably asymptotically optimal. This would follow from Proposition 2.4 if
the largest dimension of a ~ 2 Hilbertian subspace of I;, ® r. I;, could be
shown to be of order n 2

/
p

' (as in the case of I;, cf. [3]), which is true in the
case of p = 2 at least

Note added in proof After finishing this paper, the following result concerning the duality
problem for entropy numbers was proved by H. Konig and V, Milman (On the covering
number of convex bodies, to appear): For any ;.>0 there is d=d(A» I such that for any
finite rank operator v: X --+ Y between Banach spaces and all j> i,. rank( v) one has

Cr,U](v) >:; 2el(r"),

Moreover, d(i.) --+ 1 for i, --+ x".
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