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It is an open problem whether the entropy numbers ¢,(7) of continuous linear
operators T: X — Y are essentially self-dual, 1e, e (7)~¢,(T*). We give a positive
result in the case that X and Y* are of type 2, using volume estimates. This
generalizes a result of Carl (On Gelfand, Koimogorov, and entropy numbers of
operators acting between special Banach spaces, University of Jena, Jena, East Ger-
many, 1983, preprint). Moreover, we derive bounds for the approximation numbers
a,(T) of T by probabilistic averaging. The formulas are applied to determine the
exact asymptotic order of the approximation numbers of the formal identity map
between various sequence spaces as well as tensor product spaces. In the special
case of [;‘,, the result was first proved by Gluskin {Mat. Sh. 120 (1983), 180-189.
[Russian]) using a different method. < 1987 Academic Press, Inc

0. INTRODUCTION

We recall some basic definitions and notions. If X is a Banach space, we
denote its unit ball by B,. The n-dimensional /,-spaces will be denoted by
5, 1< p < oo, the conjugate index by p’=p/(p —1). All operators T: X - Y
will be continuous linear maps between real or complex Banach spaces.
Given such 7" X — Y, we let

a(Ty=inf{|T—T,||T,: X— Y, rank T, <n}
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stand for the approximation numbers,

e T):=inf{ | T] [ | X, X of codim X, <n!

n—

for the Gelfand numbers,

d,(T):= 1inf sup inf |[Tx—y]
d'Lg Y lx)=1VY€ L
imL<n

for the Kolmogorov numbers, and

-1

eT):= inf{o>0| T(B)<s | ({yi} +0By) for some y,,..., You-1 € F}

fa= ]

for the entropy numbers of T, ne N. Any of these sequences s, € {a,, ¢,., d,,
e, | satisfies the relations

IT)=s(T)2s:(T)= -~ 20,
Swam- (S TIS5(S) +5,(T); S, T: X > ¥,

\
5 (ST)<5,(S)5,(T):S:Y>Z T: X > Y.

Shntom

Moreover,
a(T)yzcT), a,(T)zd/(T),

with equality for Hilbert space operators 7, in which case we denote these
singular numbers by s,(T). For 1<p< oo, let ¢, denote the space of
operators L(/4, /3) normed by

Lip
||T||,.;:=<Z s,-(T)’”) .

In particular, || Qs the nuclear and ||« the operator norm. All these

facts about s-numbers can be found in Pietsch [13]. If it Y — Z is an injec-
tion, g: W — X a surjection , and 7: X — Y continuous linear, the entropy
numbers satisfy

e, (Tq)=e(T),  je,(T)<e,(iT)<e,(T)

they are surjective and (up to a factor of 1), injective.
Given sequences (5,),cy and (£,),n € R, we write

Sy tn

if there are constants ¢, d > 0 with

cs,<t,<ds,, neN.
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Generally vol, will denote the n-dimensional Lebesgue measure on R”".
By r,(t) we shall denote the nth Rademacher function and by (g,(®)),.n 2
sequence of independent standard Gaussian variables on some probability
space, i.e., each g, has density function

(2m) 2 e P2,

A Banach space is of (Gaussian) type 2 provided that there is ¢ >0 such
that for every finite sequence (x,)"_, & X

i1 =

n 2\ 172 n 1/2

<[E T g, ) <c<z ux,»u2) ,
i=1 i=1

where E denotes the expectation. The best type 2 constant ¢ will be denoted
by T,(X). The space is of (Rademacher) type2 if the same holds for
Rademacher functions r; instead of Gaussian functions g,. Both notions
coincide in type 2 spaces, since by Maurey and Pisier [12] there is an
increasing function f: R* — R* with

n 2N\ 172

Z giX; >

n 2\ 172
2/ (lE ’Z r.x; > <<[E
i=1

<f(Ty(X)) <{E z riXx;

i=1

2)1/2

Let R, be the natural projection of L,((0,1); X) onto Span{g{t) x|
i=1,.,n x;eX}. X is called K-convex if y(X):=sup, [|R,|| <oc. Any
space X of type 2 is K-convex, and every quotient space of X, X/Y for
Y < X, is again of type 2 with a uniform estimate

T,(X/Y) < T(X) y(X) < g(T,(X))

for some increasing function g:R* - R*. A detailed account on the
K-convexity property may be found in Pisier [17]. For the notion of
2-convex lattices and l-unconditional as well as 1-symmetric bases we refer
to Lindenstrauss and Tzafriri [10].

If {x;} is a l-unconditional basis of X, we let Ay(n):=IX7_, x|l. {x*}
will denote the biorthogonal sequence in the dual space X*. For the
notions of p-summing operators (I7,,n,) for 1<p<o and Hilbert-
factorizable operators (I, y,) cf. [10 or 13].

The unit ball of a Banach space X is denoted by B, = {x:|x| <1}. If
dim(X)=n, then By. will be identified with {ye R": |(x,y)<1 for all
xXe B}
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1. ENTROPY NUMBERS

It is an open problem whether the entropy numbers are essentially self-
dual, i.e., whether asymptotically

e(T)~e, (T*), TeL(X,Y) (L.0)

holds for all continuous linear operators 7. Direct calculations have shown
(1.0) to be true for certain diagonal operators in sequence spaces. Carl [ 1]
obtained a positive result for operators T between certain Banach spaces if
e,(T)~n~* for some a>0. We generalize his result in

THEOREM 1.1. Ler X and Y be Banach spaces such that X and Y* are of
type 2. Then for any Te L(X, Y)

dgle[m'](T)Sen(T*)gde[n,/’('](T)’ (]1)
where ¢=1In(18 To,(X) To,(Y*) p(X) y(Y*)) and d= A(T5(X) To(Y*))* only
depend on X and Y, A being an absolute constant.

We need some lemmas. Volume estimates will yield a duality statement
for e,(T) for rank n operators T. An approximation argument together with
estimates of approximation numbers by entropy numbers will then settle
the general case for arbitrary Te L{X, Y).

LEMMA 1.2. Let X be a real n-dimensional space, B, be the ellipsoid of
maximal volume contained in By.. Then

(vol,. BX.>"’" - <vol,, Bz>"’" <TyX)

vol, B, vol, B,

This lemma follows basically from the argument in the proof of
Proposition 2.1 of Gordon and Reisner [6]. The left volume ratio was also
estimated by 7,(X) by Tomczak and Jaegermann, cf. Rogalski [14]. For
the sake of completeness we indicate how the proof in [6] is modified. It
was recently proved by Bourgain and Milman that (vol, By vol, By.)"" ~
(vol, B,)¥" (cf. [16]).

Proof. Let E:=X* and B, be the ellipsoid of maximal volume in B,
which defines the Hilbert space /2. We denote the formal identity map by v:
I — E (John map). Hence |jv|| <1, [v"] <\/;. By Santalo’s inequality

[15]
(vol,, B\ << vol, B, \'"
vol,B,) ~\vol, B/
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B, is also the ellipsoid of minimal volume containing B..= By, and

v* "1 I1> E*=X the John map for X. The proof of Proposition 2.1 of
[6, (2.9)] yields, using this fact about v* ~ ',
2)1/2

VOln B2 v <n71/2 <[E
vol, B,

which is estimated by 7,(X) as in [6]. ||

28iv* Hek)
1

LemMmA 1.3. Let X and Y be Banach spaces with X, Y* being of type 2.
Then for all operators Te L(X, Y) of rank T<n

e[('n](T)<4e,z(T*), (12)

where ¢ =10g,(18 TH(X) To(Y*) y(X) y(Y*)).

Proof. We will assume that X and Y are real Banach spaces. In the
complex case, n-dimensional volume estimates have to be replaced by
(2n)-dimensional real volume arguments.

(i) We first assume that X and Y are n-dimensional. Let H and K
denote the n-dimensional Hilbert spaces the unit balls of which are the
maximal volume ellipsoids contained in By« and B,. Then B is also the
minimal volume ellipsoid containing B,. Let i: X — H, j: K — Y denote the
formal identity maps. Thus |i|| = ||j|| = 1. The polar decomposition theorem
shows that the entropy numbers of any S: H — K are the same as those of
the diagonal operator in /5 induced by the singular numbers of S. The latter
being self-dual, we have ¢,(S)=¢,(S*). Considering 7: X —» Y as a map
between Hilbert spaces, we find with S=,"'7i !,

a:=1og,(3T,(X)), b:=1og,(3T,(Y*)), m:=[an] + [bn]+n+2
e T X->Y<e, (j ' Ti"""H-K)
=e,(i "T* '": K- H)
Se€ram i X* > H)

X eppy ol K = Y e (T* Y5 X*). (13)

Choose in By a maximal system M = {z;}~ , of points such that
lz;—zly«>1 forall 1<i#j<L.

Then Ui | ({z,} + By.) is a covering of By since otherwise a point might
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be added to M. On the other hand, the sets ({z,} +1B,.) are disjoint for
different / and contained in By + 4B+ < 3B,. Thus, comparing volumes,

Lvol,(3By+) <vol,(3B),
LY < 3(vol, By/vol, B,.)"" < 37,(Y*)
using Lemma 1.2. Hence L<2“"' for k=[bn]+2. Thus ey, ,(/* ")

< 1. Similarly, e, -(i* ~ ') < 1. This yields e[,,,(T) <e,(T*) by (1.3) with
¢=log,(18 TL(X) T,(Y*)), since m< [cn] for n>2.

(ii) We now drop the assumption that X and Y are n-dimensional
and consider Banach spaces X and Y with X, Y* of type 2 and Te L{X, Y)
has rank(7T) < n. Consider the canonical factorization of T

T X —2— X/Ker T—2— Im(T) —L— Y,

T induced by T, n projection, and j injection map. Since the entropy num-
bers are projective and injective up to a constant of 2, and T acts between
< n-dimensional spaces, we find using (i)

e[('n](T) = f’[(-n](an) < 26'(“:](7_1)
K 2e,(T*)<de, (n*T*j*) = de,(T*),

where ¢ =Log,(18 T,(X/Ker T) T,((Im 7)*)). Both spaces X/Ker T as well
as (Im T)* are quotient spaces of type 2 and thus

T(X/Ker T) S To(X) p(X),  T((Im TP*)<To(Y*)7(Y*). 1

Remark. Without type 2 assumptions the following can be shown:
There is some absolute constant a such that for all operators Te L(X, Y) of
rank(7) < n,

€un In(n+1 )( T) < 46;1( T* )

In the case of dim X=dim Y=n, one uses the Lewis maps i: X — /3,
Jiln > Y with I(i~ ") I*(iy=n=1(j) I*(j '), cf. Lewis [9], to construct a
Hilbert space factorization of 7. The analog of Lemma 1.2 for i,/ can be
proved along the lines of Gordon and Reisner [6]. Estimates of L'
similar to those in (i) now involve || T, |7~ "|, which can be bounded by
n, yielding the logarithmic factor.

LeMMA 1.4. Let X and Y be Banach spaces such that X and Y* are of
type 2. Then for any Te L(X, Y) and b:=T,(X) T,(Y*)

c(T)<a,(T) < be, (T), d(T)<a,(T)<bd (T), neN. (14)



ESTIMATES FOR ENTROPY 225

Proof. Let ¢>0 and choose a subspace X, < X of codimension <# with
IT] x| < (1+&) c(T)

By Maurey’s extension theorem [11] 77, has an extension to X, S: X - Y
with | S| <b||T\x, I, Slx, = T|y,. Therefore, T— S has rank <n and

a, ()< T—(T=S) =Sl <(L+¢) b, (T).
The statement for the Kolmogorov numbers follows by duality. ||
The following proposition is due to Carl [1].
PrROPOSITION 1.5.  There is some absolute constant a >0 such that for all

Banach spaces X and Y with X, Y* being of type?2, all Te L(X, Y) and all
neN,

(f[ e T))”" <aT>(X) Ty(Y*) e,(T).

j=1

COROLLARY 1.6. Let X, Y be Banach spaces with X and Y* of type 2.
Then we have for all Te L(X, Y)

a,(Ty<de,(T),
where d:= a(T,(X) T,(Y*))% a from Proposition 1.5.

Proof. The result follows immediately from Lemmald4 and
Proposition 1.5. |}

Proof of Theorem 1.1. We reduce (1.1) to rankn operators by
approximation. Let ¢ be as in Lemma 1.3 and TeL(X, Y). For ¢>0,
choose T,e L(X, Y) of rank (T,)<n with |T—T,|| <(1 +¢)a,(T). Then

e[('n](T) < ” T—- Tn” + e[(*n](Tn) s (l + E) an( T) + e[cn](Tn)'

By Lemma 1.3, e(,1(T,) <4e,(T¥). The principle of local reflexivity yields
a,(T)=a,(T*) for compact operators T (cf. Pietsch [13, 11.7.4]). For non-
compact Te L(X, Y) at least a,(T) < 3a,(T*) can be shown. Hence,

et (T)<3(1 +6) a,(T*) +4de,(T%)
<3(1 + &) a (T*) + 4| T* — T*| + de,(T*)
<15(14¢) a,(T*) + de,(T*)
S(15(1 +e) (a(To(X) To(Y*))2 +4) e, ( T*)

where the last inequality follows from Corollary 1.6. The right side
inequality in (1.1) follows by duality. ||
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Remark. By a modification of the proof of Theorem 1.1 and Lemma 1.3
one can show: For any ¢ > 0 there is ny(e) € N such that for all n>#,

d I()[(lvi-r:)n](T)gen(T*)gde[(l f.)/z](T)’ (15)

d being as in Theorem 1.1. Let 0 <& < 1. To prove the statement, one has to
change m m (1.3) to m=[an]+[bn]+[an]+2 for a suitable
2> 3(a + b)/e, yielding

em( T) < 4e[w1]( T* )

for rank n operators 7. Since (a+ b+ a)(n + 1)/an is less than (1 +¢) for n
larger than 3/e, standard arguments using the monotonicity of the entropy
numbers will imply (1.5) for rank »n operators. The approximation
argument above remains unchanged using (1.5) instead of (1.2).

In the proof of Lemma 1.3 we used the entropy numbers of diagonal
operators on Hilbert space. Pietsch [13] showed in 12.2.5. that an operator

D,: -1, (x,) . ,—(0,x,) _, has pth power summable entropy num-

n=1

bers iff o€/, without calculating e,(D,) explicitly. We now give an
asymptotic formula for e,(D,) in sequence spaces.

ProposITION 1.7. Let X be a real Banach space with a 1-unconditional
basis {x;}7-,. Let 0,=z0,2 - 20 be decreasing and D,: X —> X the
diagonal operator induced by x,+— a,x,. Then for all ke N

Sup 2 J{”’”(O‘] Tt 0-")1/” <6k+ I(Da) < 6 Sup 2 "k”n(al .“ 0’1)1/’1.
nelN ne N

Proof. For the left inequality, choose ne N. Let X, =span{x,}7"_, =X
and D2:=D_:X,— X, Then e, (D,)=e,, (D7) and with B, := By,
any covering D;(B,,)EUf;, ({%,} +0B,) with 6>0 yields the volume
estimate

(0, 0,) vol,(B,)=vol,(D3(B,))
<2%6" vol,(B,),
274, a,) "<
Thus,
e 1(Dy)Z e, (DY) 227 (o, 0,)! "

To prove the right-hand side inequality put 8:=8 sup,_ 2 *“(a, - 6,)*"
and, for a given ¢ >0, choose ne N with

§<(8+2)2 (0, 0,)'"
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If all ¢,.,0, are =0/4, let r:=n. Otherwise, determine reN by
6,,,<0/4<o0,. Using similar notation as above, choose a maximal system
of points {%,}/_, in D;(B,) with

X, — X1l x, > 6/2, I<i#j<L.

Then D’ (B, L ({X;} +6/2B,) in view of the maximality of the system

(X4, Lettmg B=B,, any element in D, (B) can be written as

D,x=Y* o,0.x; for x=Y2 o,x;€B. Since {x,;}, is 1-unconditional,
we find

D,x= Z 00X+ 2 o,x,€ Di(B,) +06/4 B.

i=1 i=r+1

Thus, D, (B)<S U/, ({X,} + 30B). Hence, €041+ 2(D,) < 30.
To estimate L, note that

O ({%,} +0/4 B,)= D;(B,)+6/4 B,=2D/(B,)

j=1
1s a disjoint union sitting in 2D’(B,). Hence,

L(6/4) vol (B,)<2 (o, " a,) vol (B,).

By choice of ne N, (g, 0,) <2%(§/8)". Therefore,
L<(8/9) (o, 0,) <2,
implying e, , ((D,) < 25. Letting ¢ — 0 ends the proof. §
CoroLLARY 1.8. Let X be a real Banach space with Y-unconditional basis

{x;}7=,. Let 0,20,2-->0 and D,:X— X the operator given by
x;+—>0,x,;. Then

(ex(D Nl el, =€l
Proof. Obviously, e, ,(D,) = 0,/2 yields the implication “=-." Assume

now oel,. Let O0<g<p and pel, be positive decreasing. Then
< ull,2~ " for all ne N. Proposition 1.7 gives

ek(Du)gcq”lqukil/q’ kGN,

with ¢, depending only on ¢. Apply this to the sequence u= (g, - 04, 0,...)
to get ex(D¥)<c, (5., 0¢/k)" . Hence,
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e(D,) <D, — DL +el DY) <oy, +€k(Di)

k liy
<(2+c‘,)<z ay/k) :

j=1

=« lip s, A a¥ pigN b.p 4 \p
(Z ekwn)ﬂ) <(2+<;,»(z (-k——> ) <d,,4q<z ag> -
k=1 k=1 k=1

where the last estimate is Hardy’s nequality, cf. [7]. |

Remark. Similar statements hold in the case of complex Banach spaces
if the exponent k/r in 2 %" is changed to k/(2n); one has to use the
(2n)-dimensional volume in C” = R*".

2. APPROXIMATION, GELFAND AND KOLMOGOROV NUMBERS

In this section we derive some general estimates for s-numbers using
probabilistic methods. {g; ;}7,_,. {h.;}7,-, and { g }7_, will denote stan-
dard independent Gaussian variables. For {x,}7_, = X we let

n

}
ea({x,}7- )= max Y 1|
2= i=1 i

THEOREM 2.1. Let TeL(X,Y) with T=3Y"_ x*®y, {x*}cX*
{y;}< Y. Then for k <n,

4

ak+1(T)<\_/‘;{3z({xi*}7~x)[E| Z gyl”

i=1

+£2({}’i}7=1)[E N Z g,x*

i=1

"n
Y g.x¥| E

i=1

+kVE

sl

zgl

For the proof we need the following inequality of Chevet [2]:

Z g,;,-xi* ®yj

Lji=1

S82({ *}I—[)IE

> gy,“+62({y },=.)E, Z gixX

i=1

i=

(2.1)

(Chevet’s proof included a multiplicative constant \/5 on the right-hand
side which was improved to 1 in [5]).
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Proof. Without loss of generality we may assume that { yijr_, are
independent. Therefore, there is a biorthogonal sequence {yf}7_, < ¥*
Let Glw): X - Y, P. Y- Y, and G*(w): Y — Y be defined by

(,())_ e z gl[ xi*®yj
Lj=1
k
P= Z y/*®yj
j=1
G*( o Z 8. (0)yF®y,

Lj=1

and let H and H* be defined as G and G*, respectively, with variables 4, ;

" J
on a different probability space. Obviously rank(G*PG)<k, and easy
calculation shows that T'=[E(H*PH). Therefore,

a; (T <E,|T—-G*(w) PG(w)]
=L, ||k, (H*(0') PH(®')) - G*(w) PG(w)]|
<E,E, [1H* (") PH(0') — G¥w) PG(w)|

g e

S’ V/E \/5
~G*(w) PH(w') + H*(@") PG(w)]|.
(H¥w')+ G*w /f and ( —G(w)) /\/5 have the same distribution

as H*(w') and G(a)) respectlvely Moreover, they are independent, hence
we obtain

a,  (T)<4E, &, [|H* (") PG(w)].
Fix o’ and let H* = H*(w'). Then by (2.1) we get

n k
E,IH*PG(o)ll =E, k7' Y ) g (o) x}® H*(y))

i=1j=1

sk”{ (xF}r ) E

k

Z (w) H*(y))

x* } (2.2)

_,) is the norm of the operator

+62({H*(,Vj) ,I'(=1) E.

Z g{w)

Now we integrate over o', &,({ H*(@") y;}¥

n k
k12 Z z hi,_i(w/)ej®yi

i=1j=1
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mapping /4 to Y, hence by inequality (2.1} it follows that

[Em'gZ({H*( ) 7/1/ )

. ' ‘ " , i
Sk ]/'{ﬁz({é’,‘};\:” Em’ ‘1 gl(w ) ‘l‘i
i=1 .
ik
Follrd e Y glone |
=1 ‘
<k 2 {E y g,-(w')y,-{ﬁ'\//;t‘lz({y,'};;l } (2.3)
i=1

Since {Z,~1 1,8 ;17— is equivalent to {(XF_, [1,]*)'? g,}7_,, we have
" k

Z Z g,-(w)g;,,-(w’)y,-

i=17=1

k 1,2
= k ) l/zlEm < Z [g;(w)lz) '

Jj=1

Zg(w H*(w)(v)

j=1

k I/Z[Em [E

u) (u

Y g0

=1

e[ |

i=1
Theorem 2.1 now follows from this, (2.2), and (2.3). |

ProrosITION 2.2. Let TeL(X.Y), {x,}'_, be a basis of X and
yv,i=T(x,), i=1,2,.,n Then we have for k <n

EIXr gl +r—ke({yi}io)
BN, gl —/n—kes((x )i )
Proof. We shall need the following inequality due to Gordon [5]

n ik n
Z 8,%; —_\/%82({"C/'};"t1)<{E ({[Tinl ' Z Z gz‘./(w) Ly, > (2.4)
i=1 ta= .

i=1j=1

(1Y <

Let

n-—k
= span { Y g A } ,
j=1
then dim(L )= #n—k except on a set of measure 0. Therefore we have a.e.
e (D)< ITI, ) = sup JZici 63 €uf@) )
=1 X0 F 6,30 g dw) x|

Sup\ll”z'l ”Zl—l t; Z_}n——lgl /( )}',“
1nf|1\|3~1 1272 ’; Z,": 1 g..,,(w) X,-“
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We multiply by the denominator and integrate with respect to w. The left-
hand side can then be estimated from below by (2.4) and the right-hand
side

n—k n

Z Z g (w)e;®y;

i=1,j=1

Lk y)

from above by (2.1). This yields Proposition 2.2. |

ProPOSITION 2.3. Let Se L(X, Y) and y,e S(By), i=1,.., n, be linearly
independent. Moreover, consider Ic L(Y, I3) with I(y;)=e,, i=1,..,n. Then

one has for k<n
d n—./kn
k l
' \/ n M+ S 14 eX))

Proof. Given ¢>0, choose a subspace L of Y of dimension <k and
vectors w,;e L, i=1,.., n, in S(By) such that

(I+&)dy ((S)Z Iy, —wil

for all i=1,.., n. We have

(1+e)d, (S Z [7*(eB) = 3 Nlyi—will I7*(eX)l

i=1 i=1

>n—§": Cwiy T¥(eF))

i=1

=n—U(
Since dim L < k, we obtain

tr(i 1(w,~)®e,-*)< 5 s,(i 1(w.-)®e,-*>

i=1

M=

I(W,-)®e,*>~

1

i

<

(Z Iw)®ek )
£ )

(5
{ 3. e~ (y)||2>”2+(i ue.-ni)m}
k1

|1l f(1+s)dk“(5)+\/n

N

x;éx

640/49.:3-3
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Therefore, we get

(1+e)d“15){¢kn|m+zu1* >4}>n Jln. 1

i=1

PROPOSITION 2.4.  Assume that dim(X)=dim(Y)=n and that Se
L(X, Y) is an invertible operator. Then we have for all k <n

et (S)Z7a(STY) Vinf{d(E, 15 ) |[ES Y, dim(E)=n—k}.

Proof. There exist AeL(Y,[5), BeL(l%, X) such that y,(S ") =
[Al Bl and S° ' = BA. Let

o= |A|l {inf{d(E, I:"*)|ECY, dim(E)=n—k}) ".

There is a subspace L of X such that ¢, ,(S)=|S|,, where
dim(L)>n—k. We claim that there exists a vector x,e L such that

ISxoll=1 and  [B 'xof|<a (2.5)
since, otherwise, we have for all x50, xe L, |B"~ 'x|| > «||Sx|, therefore
IB x| >alSxll=alld 'B 'x||Zal4] |B ‘x|

which implies that d(S(L), /3 *)<|{A|| « '; but this contradicts the
definition of a. Using (2.5) we obtain

1l (S)Z ST Z Sxqll/xoll = (2] Bl
which ends the proof. |

Remark. Let s be the largest dimension of a 2-isomorph of / in the
space Y. Then, by using Theorem 5.2 in [3] we get

Js=e(n—k)finf{d(E, In*)|[ E< Y)
for some absolute constant ¢ > 0. Hence we obtain from Proposition 2.4

Cri(S)Zeln—k)"2s ™1 2p(S 1) (2.6)

3. APPLICATIONS

In this section we apply the previous results to derive asymptotic
estimates for the approximation numbers of the identity maps between
general symmetric spaces as well as the spaces of operators ¢}, and special
tensor product spaces. The first results are direct corollaries of Section 2.
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COROLLARY 3.1. Let {x;}'_,cY and {y;}i_,cY be normalized
l-unconditional bases of X and Y, respectively. Define id, ,€ L(X, Y) by
id, (x;)=y;, i=1,.., n Then we have for k <n,

ak+1(id,\’. Y)
lf‘ 1<k<max{)%\/*( )s/ZY(n)}

(6
< .
{ck "2 max{iys(n), Ly(n)}; if max{i.(n). A3(n)} <k,

where ¢=c(T,(X*), T,(Y)) is a constant that depends only on the type
2-constants of X* and Y.

Proof. This follows from Theorem 2.1 since

e({x}*}7_ )= max Z t;x*| = max Ave Z +tx*] /2 TH(X*)
Nz =1t ||, 2 f=1 + |2
and
E Z giyi‘ <e(THY))E Z riyi’:C(TZ(Y)) Z Yill»
i=1 i=1 i=1

and similar inequalities hold if we interchange {x*}7_, and {y,}7_,. Also

we have to observe that
/ min
lellz =1

o) el (63} ) <5 TAX) Ty(Y). 8

n n

Z Ly

i=1

t:x

i
i=1

llidy, vl < max

tla=1

COROLLARY 3.2. Let {x;}"_, and {y;}7_, be normalized 1-symmetric
bases of X and Y. Let idy y€ L(X, Y) be defined as above. Then we have
k+l(l X. Y I’l)/\/— l/‘ ;tzy(n)ékﬁn/z,

where ¢ =c(T,(Y)) is a constant that depends only on the type 2-constants

of Y.
Proof. We apply Proposition 2.3. Since {y,}7_, is a 1-symmetric basis,

e =3 Iy*l =n

i=1 i=1
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Using the fact that a Banach lattice of type 2 is 2-convex and applying the
argument in the proof of Proposition 3.7 [8] we find

I
Ml < C(TA(Y wz,(zl

i—1

Thus we obtain
d, . (id = (n—\/kn) ( n\//;

The previous two corollaries together yield

bl
Z Yi

i=1

-1
+n>. |

COROLLARY 3.3. Let {x,}7 | and {y;}"_, be normalized 1-symmetric
bases of X and Y. Let id,, ye L(X, Y)map x; to y,, i=1,.., n. Then we have
for all 1 <k<n/2

¢ laidy yy<max{dlidy y), c,(idy )} <ai(idy ),

where ¢=c(TH(X*), T,(Y)) depends only on the type2-constants of X*
and Y.

Remark. For X=10, Y=1I, 1<p<2<g< and k<n/2 we obtain
the results of Gluskin [4] again. For some further applications in the case
k = n/2 we need Gluskin’s method.

DEerFINITION. Let X=(R", J-||) be n-dimensional and Ne N, a>0. We
say that X has N a-essential extreme points iff there are elements
Ayres Ay € By with

aBy = I'(A,..., Ay) S B,

where I'(A) denotes the convex hull of a given set A. Gluskin [4] used this
concept to prove

THEOREM 34. Let 8#>0, a>0, n, NeN. Assume that X=(R", ||| )
and Y=(R" ||ly) have N a-essential extreme points with
N < ({s) exp(8? n/4). Then there is c = c(a) depending only on a such that

ay(Id: X - Y*)< c(0 /(n-k)/k + 6°(n/k)).
Gluskin applied this to X = Y =17, | <p<2. We consider X=Y =11 X . I

mips

which is the dual of X* = Y* :1” &, 0 =L(, 1), where 1/p+1/p'=1.

LemMMA 3.5, Let 1 <p<2. Then there are a,, b,>0 such that I I

7> Yp xip
has N a,-essential extreme points for some Ne N with

N <exp(b,n*").
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Proof. By [4], I has N<exp(f,n*”') o, -essential extreme points for
some «,, #,>0 depending only on p. Denote them by 4,,.., 4. Then
|Mi®j-j“l§z<1 and

9‘,2,31; ®”,;§af,r(x®y| Hx”/;: ||)’”/;= 1)
S I'(4® 4l j=1,., N)= By

Since N° <exp(2f,n*”), this proves the lemma with a,=a2, b,=28,. |

PROPOSITION 3.6. Let | <p<2. Then there are constants a,, b, >0 such
that ¢, has N a,-essential extreme points for some NeN with

N<exp(b,n”” *'(Inn)).

Proof. By Gluskin [4] there are «,,f,>0 such that /; has M
a,-essential extreme points for M <exp(f,n*”). Thus there is
A= {i. M e By such that

2, Bp S I(3.... ;™) < By. (3.1)

Moreover, the proof of Lemma 1 of [4] and the remarks before it show
that the A’ can be chosen in such a way as to have support
S;:={je{l,..n}|Ai#0} of cardinality

IS4 <[P 1+1.
Let =n"7 and choose a d-net 4 in By of cardinality
Li=A] < (14 2/0)" < exp(2n In 2n).
Let
2:={TeL(l§,l§)|T= Zn: A X @ Yy with A= (4,)_ €4,

=1
Xu, V€4 and cz(T)SZ}.

Since for each i, | S, < [n*¥7'] + 1, the number of different elements in X can
be estimated as

|21 |44
<exp(4n(in 2n)(n*” + 1) + B,n*7"y < exp(b,n*” * ' 1n n)
for some b,>0. We claim that for n> 4o !

(22,) "' BaSI(T| Te X)S2B=2B,
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which would prove the proposition. The right inclusion follows from the
definition of 2" To prove the left inclusion, let Te ¢j with ¢,(T)= 1. Then
there are A€/}, |4, =1, and orthonormal systems (u.); _,, (vc);_, </
with

T=Y lLau®u,.
k=1

Choose x,,y.€4 with [lu,—x,llz<n? |lvg—yllp;<n? Further, by
(3.1), there are (@), € R* with 3°¥  a,<a;'suchthat A=Y , a,4" Let

i=1= i=1
T:=Y Au®u,, =Y Mxe®y.
k=1 k=1
Then T=37_, a,T,; and elementary estimates show
CZ(Ti_Si)gcp(Tr'—Si)gzn 1’
(SIS T+ T = S)< 14, +2/n<2 (n22).
Hence, S;€2 and $:=3}_, a,S,ea, 'I(L) provides an approximation of
T with
cT—8)< Y a;c(T,—S)<20, 'n<}
k=1

for n>4a, ' Now let T':= T— S and repeat the argument with 7" instead
of T. This yields S' e 4 'I(Z) with

o (T'—S"<i
Continuing this with 7%:=T"'— §', we find §’e (1/2) a, 'I(X) with
Cp(TI_S[)<1/2[+l’ T[+1:= T[4S[.
This gives with §%:= S
T=S+T"=8"+8"+T,=- =) S’e2a;‘1"(2),
(=0
which is what we claimed. |
ProposITION 3.7. Let 1 <p<2. Then with constants independent of

1 <k <n? but depending on p,

L o n l; lf I<ks [}13 2”)]
ak(ld. Cp_>CP‘ ~ nl/p'+ l/‘Z/\/,:; lf [n3 -2,"[1} <k\<\n2//2.
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For k>n*2 one has at least: If k<n>—b,n* " *(Inn) then d;'

'n? —kp— (V2 -p Sak(ldl CZ_, C;/) Sdp /2 —kn WV2-Up /ln n, and
ifn*—b,n’ " ¥P(Inn) <k <n® then max{n' =%, d; ' /n* —kn P Vr} g
a(Id: ¢t - cr)<d,n' ~*?(Inn).

Proof. 1f 1<k <n?/2, the upper estimate follows from the obvious fact
a,<1 in the case k<[n’ ??], and when [n® *#]<k<n?2 from
Theorem 2.1, where we use the estimate d(c%, % )<n"? and inequality
(2.1) to obtain

E

< dpnl/p' + 1/2-

('1

n n
.
Y g.e®e nsn/"[E Y gie®e;

ij=1 & ij=1

If n?2<k<n, the upper estimates are derived from Gluskin’s
Theorem 3.4 and Proposition 3.6. The lower estimates are a consequence of
Proposition 2.3 in the case k <#?/2, and of Proposition 2.4 for k > n?/2. To
apply Proposition 2.4 one has to know that largest 2-Hilbertian subspace
in ¢?, has dimension of the order n® ~*” (see Example 3.3 [3]). For k > n?/2
we also use the estimate a,(Id)> |[Id~"'| '=n'"?%". |

Remark. Probably the logarithmic terms for k > n?/2 are not necessary.
The approximation numbers a,(Id: ¢, —c;) for 1 <p<2<g< oo can be
derived in a similar way, as in the case of /7 the case p’=gq is the essential
one.

When p=1 we have

PROPOSITION 3.8. For | <k <n?,

1 if 1<k<n
Wt e wik; i n<k<np2
a(Id: ¢ —c" )~ \/;ZTE”J/Z; if n2<k<n®—n

ne if nP—n<k<n’

Proof. We apply the same proof of Proposition 3.7 for p =1, but with
Inn replaced everywhere by 1 because we know that ¢?=1/5 ®, /5 has
N =exp(bn) a,-essential extreme points by Lemma 3.5. ||

PROPOSITION 3.9. Let 1 <p<2 Then with constants independent of
1 <k < n, but depending on p,

1 1<k<[n¥]

ad: I @, 1 @, )~ { n'7) kW ]<k<n?2
n-¥r n?—[n?¥? )<k <n



238 GORDON, KONIG, AND SCHUTT
For n*/2 <k <n*—[n*"] one has

@ -1 ®, ) <d, = kjn' 7

Proof. The upper estimate for k < n?/2 again follows from Theorem 2.1
and

<d
fe

nl/p’

Z g.6:®e;

ij=1

]

which holds by Chevet’s inequality (2.1). The upper estimate for k > n?%/2
again follows from Theorem 3.4 using Lemma 3.5. For the lower estimate
in the case k <n?/2 we again use Proposition 2.3. To do so, one has to
estimate

\d: 17 ®, 17— I
from above by »n'”7. This is seen as follows: For any Te L(R", R"),
1T p=nr(T: 5> L)< |1d: 5> LI NT: 1> 1|
x ny(1d: [, - 13)
<n- AR T”z;,'. ®. 10 % n'z=n""| T”/;, e 10+ |

Remark. For n?/2<k<n®—[n*f], the given upper estimate is
probably asymptotically optimal. This would follow from Proposition 2.4 if
the largest dimension of a <2 Hilbertian subspace of /%, & ./} could be
shown to be of order n*”' (as in the case of /7, cf. [37]), which is true in the
case of p=2 at least.

Note added in proof. After finishing this paper, the following result concerning the duality
problem for entropy numbers was proved by H. Kénig and V. Milman (On the covering
number of convex bodies, to appear): For any 4> 0 there is d=d(A)}> 1 such that for any
finite rank operator v: X — Y between Banach spaces and all j> 4. rank(v) one has

Cranlv) < 2e(e™), eran(v*) < 2e (r).

Moreover, d(4) — 1 for 2 > .
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